2016 STAM Best Paper Award

Recent Progress of High Performance Polymer OLED and OPV Materials for Organic Printed Electronics

November 2016
Chizu Sekine
Advanced Material Development Laboratory
Sumitomo Chemical Co.,Ltd.

Acknowledgement

Professor Dr. Yasunari Zempo Dr. Takaho Tanaka (Editorial coordinator of STAM in 2014)

STAM Editorial Board

The STAM Best Paper Award 2016

Recent Progress of High Performance Polymer OLED and OPV Materials for Organic Printed Electronics

Chizu Sekine, Yoshiaki Tsubata, Takeshi Yamada, Makoto Kitano and Shuji Doi Sci. Technol. Adv. Mater. Vol. 15 (2014) p. 034203

Advanced Material
Development Laboratory
Sumitomo Chemical Co.,Ltd.

Advanced Material

Development Laboratory

Sumitomo Chemical Co.,Ltd.

International Association for the Protection of Intellectual Property of Japan

Shuji Doi

Research Planning &

Coordination Dept.

Sumitomo Chemical Co.,Ltd.

R&D on Printed Electronics Materials

of Sumitomo Chemical

Conducive Conjugated Polymers 1981~1991

Oriented PPV: 10⁴ S·cm-1

Semi conducive Conjugated Polymers 1991~

Polymer OLED

Organic transistor

Organic Photovoltaic

Materials

Emitter

Semiconductor

Photoelectric convertor

Devices

Structure, Electrode, Encapsulation

Printing

Inkjet, Coating, R to R

Highlight (Polymer OLED)

$$\eta_{ext} = \gamma \times \eta_{eh} \times \Phi_{ph} \times \kappa_{oc}$$

: External QuantumEff.

: Charge Balance

: Exciton Formation Ratio

: Outcoupling

Loss of Carrier Balance

: Charge Balance

: Exciton formation ratio

Decay of Photo Luminescence

 Φ_{nh} : PLQE

Process BEFORE exciton formation

Process AFTER exciton formation

- -Decay of photoluminescence caused by quenching site generation is main factor of lifetime.
- -Decay of PL is NOT caused by charge carrier only, BUT caused by exciton formation.

(IMID2016, NoG15-1)

Highlight (Polymer OLED)

Figure 6. Degradation curves of EL and PL peak intensities of EL device containing a blue polymer during constant-current operation. Device structure: ITO/ HIL/ IL(20 nm)/ LEP(60 nm)/ cathode.

(Sci. Technol. Adv. Mater. 15 (2014) 034203)

Innovative Trends of PE

Japan Advanced Printed Electronics
Technology Research Association

"Basic Process Technology for Customization"

"Flexible Multi-functional Device Technology"

(http://www.nedo.go.jp/english/news/AA5en_100064.html)

Organic and Printed Electronics Association

Hybrid Electronic Systems

;combining printed and flexible electronics with classical silicon components which enables a bigger range of new applications. (http://www.oe-a.org/workinggroups)

FlexTech Alliance Receives \$75M
Department of Defense Award To
Create and Manage a Flexible Hybrid
Electronics Manufacturing Facility.
(Aug. 28, 2015) (https://flextech.org/)